Skip to main content

Proangiogenic Effect of Metformin in Endothelial Cells Is via Upregulation of VEGFR1/2 and Their Signaling under Hyperglycemia-Hypoxia.

Author
Abstract
:

Cardiovascular disease is the leading cause of morbidity/mortality worldwide. Metformin is the first therapy offering cardioprotection in type 2 diabetes and non-diabetic animals with unknown mechanism. We have shown that metformin improves angiogenesis via affecting expression of growth factors/angiogenic inhibitors in CD34⁺ cells under hyperglycemia-hypoxia. Now we studied the direct effect of physiological dose of metformin on human umbilical vein endothelial cells (HUVEC) under conditions mimicking hypoxia-hyperglycemia. HUVEC migration and apoptosis were studied after induction with euglycemia or hyperglycemia and/or CoCl₂ induced hypoxia in the presence or absence of metformin. HUVEC mRNA was assayed by whole transcript microarrays. Genes were confirmed by qRT-PCR, proteins by western blot, ELISA or flow cytometry. Metformin promoted HUVEC migration and inhibited apoptosis via upregulation of vascular endothelial growth factor (VEGF) receptors (VEGFR1/R2), fatty acid binding protein 4 (FABP4), ERK/mitogen-activated protein kinase signaling, chemokine ligand 8, lymphocyte antigen 96, Rho kinase 1 (ROCK1), matrix metalloproteinase 16 (MMP16) and tissue factor inhibitor-2 under hyperglycemia-chemical hypoxia. Therefore, metformin's dual effect in hyperglycemia-chemical hypoxia is mediated by direct effect on VEGFR1/R2 leading to activation of cell migration through MMP16 and ROCK1 upregulation, and inhibition of apoptosis by increase in phospho-ERK1/2 and FABP4, components of VEGF signaling cascades.

Year of Publication
:
2018
Journal
:
International journal of molecular sciences
Volume
:
19
Issue
:
1
Date Published
:
2018
URL
:
http://www.mdpi.com/resolver?pii=ijms19010293
DOI
:
10.3390/ijms19010293
Short Title
:
Int J Mol Sci
Download citation